Characterizing HSF1 Binding and Post-Translational Modifications of hsp70 Promoter in Cultured Cortical Neurons: Implications in the Heat-Shock Response
نویسندگان
چکیده
Causes of lower induction of Hsp70 in neurons during heat shock are still a matter of debate. To further inquire into the mechanisms regulating Hsp70 expression in neurons, we studied the activity of Heat Shock Factor 1 (HSF1) and histone posttranslational modifications (PTMs) at the hsp70 promoter in rat cortical neurons. Heat shock induced a transient and efficient translocation of HSF1 to neuronal nuclei. However, no binding of HSF1 at the hsp70 promoter was detected while it bound to the hsp25 promoter in cortical neurons during heat shock. Histone PTMs analysis showed that the hsp70 promoter harbors lower levels of histone H3 and H4 acetylation in cortical neurons compared to PC12 cells under basal conditions. Transcriptomic profiling data analysis showed a predominant usage of cryptic transcriptional start sites at hsp70 gene in the rat cerebral cortex, compared with the whole brain. These data support a weaker activation of hsp70 canonical promoter. Heat shock increased H3Ac at the hsp70 promoter in PC12 cells, which correlated with increased Hsp70 expression while no modifications occurred at the hsp70 promoter in cortical neurons. Increased histone H3 acetylation by Trichostatin A led to hsp70 mRNA and protein induction in cortical neurons. In conclusion, we found that two independent mechanisms maintain a lower induction of Hsp70 in cortical neurons. First, HSF1 fails to bind specifically to the hsp70 promoter in cortical neurons during heat shock and, second, the hsp70 promoter is less accessible in neurons compared to non-neuronal cells due to histone deacetylases repression.
منابع مشابه
Conventional and novel PKC isoenzymes modify the heat-induced stress response but are not activated by heat shock.
In mammalian cells, the heat-induced stress response is mediated by the constitutively expressed heat shock transcription factor 1 (HSF1). Upon exposure to elevated temperatures, HSF1 undergoes several post-translational modifications, including inducible phosphorylation or hyperphosphorylation. To date, neither the role of HSF1 hyperphosphorylation in regulation of the transcriptional activity...
متن کاملAgonist-activated glucocorticoid receptor inhibits binding of heat shock factor 1 to the heat shock protein 70 promoter in vivo.
We have previously shown that activation of glucocorticoid receptor (GR) signaling in stressed cells will cause inhibition of the heat shock response as mediated by heat shock transcription factor 1 (HSF1). In that work, a full-length human heat shock protein 70 (Hsp70) promoter was used to measure HSF1 transactivity, and the data suggested inhibition of HSF1 through the transactivation or tran...
متن کاملCoREST represses the heat shock response mediated by HSF1.
The stress response in cells involves a rapid and transient transcriptional activation of stress genes. It has been shown that Hsp70 limits its own transcriptional activation functioning as a corepressor of heat shock factor 1 (HSF1) during the attenuation of the stress response. Here we show that the transcriptional corepressor CoREST interacts with Hsp70. Through this interaction, CoREST repr...
متن کاملThe SIRT1 Modulators AROS and DBC1 Regulate HSF1 Activity and the Heat Shock Response
The heat shock response, the cellular response to protein damaging stress, is critical in maintaining proteostasis. The heat shock response is regulated by the transcription factor HSF1, which is activated upon heat shock and other stresses to induce the expression of molecular chaperones. SIRT1 has previously been shown to activate HSF1 by deacetylating it, leading to increased DNA binding abi...
متن کاملThe systemic amyloid precursor transthyretin (TTR) behaves as a neuronal stress protein regulated by HSF1 in SH-SY5Y human neuroblastoma cells and APP23 Alzheimer's disease model mice.
Increased neuronal synthesis of transthyretin (TTR) may favorably impact on Alzheimer's disease (AD) because TTR has been shown to inhibit Aβ aggregation and detoxify cell-damaging conformers. The mechanism whereby hippocampal and cortical neurons from AD patients and APP23 AD model mice produce more TTR is unknown. We now show that TTR expression in SH-SY5Y human neuroblastoma cells, primary h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015